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Abstract 

This project designs a fast face detection method based on 

Eigenfaces with small training data set. The project focuses on fast 

face detection with the assumption that the images to be detected 

has good brightness condition and the human faces are all frontal 

faces if there are faces in the images, and the images’ size are 

neither too big nor too small. The project detects faces in 2-D 

images. 

The project firstly trains a small data set of training faces images to 

obtain an eigenfaces subspace, and then finds the potential area of 

faces by searching ROI (Region Of Interest) in the binary image 

obtained from the input color image, that is firstly converts the color 

image to binary image and finds the human skin area by a HSV 

threshold, and then groups the image to find useful objects, and 

then detects faces in successive small ROI windows based on the 

Euclidean distance between the ROI and the trained eigenfaces 

subspace. 

. 

  



Introduction 

The face detection is always one of the most important issues in 

computer vision. Face detection is also the first step in face 

recognition. This project focuses on finding a fast face detection 

method in some given conditions that could be used in detecting 

human faces from a 2-D image with just a small training data set. 

The given conditions might include good brightness condition, 

suitable size of image, all frontal faces, well dressing people with 

normal facial expression, and so on. Because in some situation we 

don’t need to find all the faces in all kinds of images, we might just 

need to find a specific group of people or even a specific person 

from some pictures taken in good conditions, thus this project 

focuses on finding such a method for fast training and fast detecting 

with a small training data set from pictures taken in good 

conditions. 

Background and Motivation 

Fast face detection is useful in face recognition. If we could detect a 

face fast, then we may recognize a face fast. And it is better if we 

could recognize a face at the same time when we are detecting the 

face. Thus we might consider using the same method in doing face 

detection and face recognition. Then the eigenfaces method is a 



good choice for this purpose.  

The eigenfaces method is the first method applied in face detection 

and face recognition using PCA approach [1], [2], after PCA was 

firstly used in representing human face features [3], [4]. Even 

though the eigenfaces method is old, it is still an important and 

effective method in face detection and recognition [5]. It is a linear 

projection method as Fisherface [6], and it is also reported to 

outperform the LDA method when the number of training samples 

is small [7]. And if the training data set is small, then the training will 

be fast. As well the detection will be fast. Thus the eigenfaces 

method is a good choice in small training data set. And it also could 

be used for future recognition purpose. 

For the fast detection purpose, we could assume some good 

conditions as said at the beginning of this chapter. Thus we could 

apply some specific methods to improve the efficiency of the 

detection. The approach this project use is: firstly converts the color 

image to a binary image by a HSV range threshold, and then 

dilates and groups the binary image to further find the potential 

facial area, and then uses successive small ROI (region of interest) 

windows to detect faces. This method could avoid searching the 

whole image with different size of windows, thus saves times and 

improves the efficiency of the detection. 



The Technical Approach 

This project designs a fast face detection method based on the 

eigenfaces approach, the project primarily contains two parts that 

are the training part and the detecting part as shown in Figure 1.  

 
Figure 1 

As the figure 1 shows, this project firstly trains the training faces, 

and then detects faces of the input image based on the trained 

eigenfaces subspace. The major structure and diagram of the 

training part and the detecting part is shown in Figure 2. 

 
Figure 2 



1. Training Approach 

In the training part, twenty-three of face images are used in the 

testing of this project, each training face image is a grey level 

image with the width 92 and the height 112 and 8bit depth. The face 

images used as the training set are shown in the Figure 3. The 

reason of choosing these face images is that these images contain 

different types of frontal faces among which there men and woman, 

persons smile and persons don’t smile. And eight of these face 

images are even taken from the same person that help improve the 

accuracy of the detection on this specific person, thus could help 

future recognition. 

 
Figure 3 



The summary procedure of the training part is: 

1. Smooth each training image by a Gaussian filter; 

2. Calculate the average face of all the training face images; 

3. Calculate the covariance matrix of the training data set; 

4. Calculate the eigenvalues and eigenvectors of the covariance 

matrix by Jacobi rotation method; 

5. Calculate the eigenfaces subspace by the eigenvectors and 

normalize the eigenfaces by the eigenvalues; 

6. Project each training face image onto the subspace to obtain the 

weights of each training image for the next step of detection. 

1.1 Gaussian template 

Rather than design a Gaussian filter, this project just designs a 

smoothing function gaussianfilter() using a 3 by 3 Gaussian 

template directly, with the standard deviation of 0.849. 

1.2 Calculation of the average image 

The calculation of the average face is by the formula shown in 

Figure 4. This project designs a subroutine function whose name is 

calculate_average_image() to calculate the average face. 

 

Figure 4 

Where ψ is the average face and Ƭn stands for a training face 

image. Each training face image could be seen as a vector. For 



example, a training face image’s size in this project is 92 by 112, 

and then this image could be seen as a vector of 10304. The ‘M’ in 

Figure 4 stands for the total number of training images, and in this 

project this number is 23 as said at previous part. The average face 

image of all the training face images shown in the Figure 3 is shown 

in the Figure 5. 

 

Figure 5 

1.3 Calculation of the covariance matrix 

The calculation of covariance matrix is shown is Figure 6. 

 

Figure 6 

Where Ƭi is one of the training face images seen as a vector, and 

ψ is the average face image also seen as a vector, and ϕi is the 

difference between a train image and the average face, and A is 

called a difference matrix in this project. From Figure 6 we have 

seen that the covariance matrix C is a 10304 by 10304 matrix in 



this project, and it is very uneconomic to calculate the eigenvectors 

and the eigenvalues of such a large matrix. Thus we could 

calculate the eigenvectors and the eigenvalues of L where L is 

shown in the Figure 7. 

 

Figure 7 

As shown in Figure 7, if we calculate the eigenvectors of L, then we 

could calculate the eigenvectors of C, and L is just a 23 by 23 

matrix that is much easier to be handled. Thus this project designs 

a subroutine function calculate_covariance_matrix() to calculate L. 

But if we calculate the eigenvectors of L, we could only obtain 23 

eigenfaces, and by calculating eigenvectors of C we could have 

10304 eigenfaces. This means that much information will be lost. 

However, we just need the eigenfaces with the most eigenvalues to 

help detecting faces. Thus this method is effective and efficient. 

1.4 Calculation of eigenvectors and eigenvalues of L (Jacobi)  

The calculation of eigenvectors and eigenvalues of the symmetric 

matrix L is based on Jacobi rotation method. This project uses the 

Jacobi function from OpenCV. And this project rewrites the Jacobi 

function from OpenCV with the purpose of improving the efficiency 

and accuracy even though this project has not found anything to be 



improved. However, let us have a look at the Jacobi rotation [8]. 

 

Figure 8 

The matrix shown is Figure 8 is a basic Jacobi rotation. The basic 

rotation and the matrix after being applied by such a basic rotation 

is also could be seen in Figure 9. 

 

Figure 9 

 

Figure 10 

From Figure 10 we could see that choose the right θ we could let 



a’pq and a’qp to 0, and the sum of the squares of the off-diagonal 

elements is convergent by Jacobi rotations. Thus by doing many 

times of Jacobi rotations, we could let the sum of the squares of the 

off-diagonal elements to become very small (tends to 0), then the 

diagonal elements will be the eigenvalues of the original matrix, 

and the eigenvectors of the original matrix is the columns of V 

where V = P1·P2·P3 ··· and Pi is a basic Jacobi rotation matrix. 

This project rewrites the Jacobi subroutine from OpenCV that using 

successive threshold to apply Jacobi rotation. The output of the 

Jacobi subroutine is shown as Figure 11. 

 

Figure 11 

1.5 Calculation of Eigenfaces 

As shown in Figure 7, if v is the eigenvector of L, then Av is the 

eigenvector of C. And the corresponding eigenvalue λ is the square 

of ||Av||. This project designs a subroutine calculate_eigenfaces() 

to calculate and normalize the eigenvectors of C, and these 



eigenvectors of C are the eigenfaces we need. The eigenfaces of 

the training face images shown in Figure 3 are shown below in the 

Figure 12. 

 

Figure 12 

1.6 Project Training Faces 

The projection of each training face to the eigenfaces subspace is 

based on the formula shown in Figure 13. 

 

Figure 13 

Where Ƭ is a training face image, ψ is the average face image, uk is 

an eigenface, and ωk is the projected weight of face image Ƭ on 

eigenface uk. 



This project designs a subroutine project_to_subspace() to project 

the training face images onto the eigenfaces subspace to obtain all 

the weights of each train image to all the eigenfaces. 

1.7 What I have done VS what is in OpenCV about eigenfaces 

1. There is a function cvCalcEigenObjects() in OpenCV that 

calculates eigenvectors of covariance matrix of input samples. 

However this function is a general purpose function based on PCA 

approach and is not a specific function in computer vision, thus the 

efficiency of this function is influenced by a lot of useless 

procedures, variables, and calculation steps. And using this 

function has to include another useless shared libraries cvaux.so 

which is large and will influence the compile efficiency. And the 

most important is that this function gives only the eigenvectors and 

eigenvalues as the output without other important things such as 

the difference matrix ϕ. Thus, I write every subroutine of the 

eigenfaces approach except the Jacobi function because the 

Jacobi function in OpenCV is efficient. 

2. I write subroutines calculating the average face, covariance 

matrix, the difference matrix ϕ, and eigenfaces. Even though I 

rewrite the Jacobi function the same as the Jacobi function in 

OpenCV, I do not need to include cvaux.so which is a large and 

useless library, thus improve the efficiency of compiling. 



3. The subroutines I wrote in this project give more efficiency than 

the single function in OpenCV. For example, this project set the 

difference matrix ϕ as an output when calculating the covariance 

matrix, thus ϕ could be used as an input in the calculation of 

eigenfaces, thus there is no need to calculate ϕ many times, and 

then improve the efficiency. 

4. I designed subroutine calculating not only the Euclidean 

distances between an image and the training face images, but also 

the Euclidean distance between an image and the whole 

eigenfaces subspace. This helps greatly in detecting faces. And the 

calculation is done in the same procedure when calculating the 

projected weights, thus improves efficiency again. 

2. Detecting Approach 

The detecting part begins after the training part was done. As soon 

as the training procedure is finished, the output eigenfaces, the 

average face and the projected weights of training images to 

eigenfaces will be treated as the input variables in the detection 

subroutine.  

The summary procedure of the detecting part is: 

1. Detects the image’s size and the number of channels. If the input 

image is with the same size as the training images, then projects 

the input image to eigenfaces subspace directly. Else if the input 



image is a general size three channel color image, then applies 

further procedures and subroutines to find the potential face areas 

to be projected and detected. 

2. In the case of dealing with a general size three channel color 

image, this project firstly converts the color image to a binary image 

for further processing, this project choose a HSV range as the 

threshold for the conversion. 

3. Erodes the binary image after it is converted from a color image 

to separate objects which are possibly from different targets in the 

image. This project applies two times of erode operation with 

different types of structure elements. 

4. Groups the binary image by 6-connectedness after doing the 

dilation. And then calculates the complexity of each object.  

5. Filters out useless objects among which the area and complexity 

are very small.  

6. Groups the processed binary image again and sets up 

successive small ROI windows for all the remaining objects by the 

size and the shape of the rectangle boundaries of these objects. 

7. Gets a small grey level image from the original color image that 

this grey image is corresponding to the ROI window in the binary 

image, and then resize the small grey image as the training images. 

8. Projects the grey ROI image to the eigenfaces subspaces to 



obtain the weights, and then calculate the Euclidean distances 

between this ROI image and all the training images, and the 

Euclidean distance between this ROI image and the eigenfaces 

subspace. 

9. Calculates the possibility of the existence of a face in this ROI 

image by the minimum and maximum Euclidean distance between 

this ROI image and the training images, and by the Euclidean 

distance between this ROI image and the eigenfaces subspace, 

and by the average of all the Euclidean distances between the ROI 

image and all the training images.  

10. The final step is detecting a face by the final possibility of the 

existence of a face, and then output the result. 

2.1 Threshold (HSV) 

The threshold used in converting the color image to a binary image 

is very important. If we have a specific purpose of the detection, 

then we would have a specific range of objects, and then we would 

have specific assumptions, and then we would apply specific 

thresholds.  

This project choose a HSV range as the threshold to convert the 

color image to a binary image at the assumption that we focus on 

detecting human faces and not animal or cartoon faces or faces 

with masks, and the brightness of the picture is well, and the picture 



is taken in good condition that the faces are all frontal faces and 

people dress well with normal facial expression. Then we could 

assume a range of HSV values to be the potential area of human 

skins. This project assume the minimum hue is 0°, and the 

maximum hue is 40°, this range of hue implies write to yellow of 

human skins. And this project also assumes the minimum 

saturation is 30, and the maximum saturation is 150, and the 

minimum value is 80, and the maximum value is 255. However, if 

the input image could not satisfies the assumed conditions, then 

the output would be meaningless in further processing, an example 

could be seen as below in Figure 14. 

 
Figure 14 

A good and meaningful example of the input and the output of the 

conversion could be seen as below in Figure 15. 



 

Figure 15 

2.2 Erosion 

Erosion is very useful in this project because it could help separate 

objects from the same connected region. Thus could help find the 

face region without the dealing with connected but useless 

components such as the clothes and hands. This project designs a 

subroutine erode() doing erosion operation with 6 different types of 

structure elements. And this project chooses two types of these 

structures elements to do two times of erosions. The type1 

structure element could help separate objects greatly and the type6 

structure element could further eliminate some noise without erode 

too much. The structure elements could be seen in Figure 16. 

 

Figure 16 

An example of the erosion could be seen as below in Figure 17. 

From the example we could see that after doing the erosion 

operation, the output binary image is more meaningful for the 



further processing and detecting. 

 

Figure 17 

2.3 Panning 

The panning procedure begins after the erosion operation. The 

purpose of this panning procedure is to filter out useless objects to 

improve the efficiency of further detection. This project designs 

three subroutines in doing the panning procedure. The first 

subroutine group_by_connectedness() groups the binary image by 

6-connectedness. The subroutine calculate_complexity() calculates 

the complexity of each object in this binary image. And then the 

subroutine panning() filters out useless objects that the size and the 

complexity of these objects are very small. That is, the tiny size 



objects and very simple objects are seen as useless and are 

filtered out. An example of the output of this procedure could be 

seen in Figure 18. 

 

Figure 18 

2.4 Get ROI images by successive ROI windows 

After doing all the previous procedures, the remaining binary image 

might contains only meaningful objects to be detected as shown 

above in Figure 18. However, there might be the situation shown 

below in Figure 19. 

 

Figure 19 

Thus we could apply successive small windows to get different 

small ROI (Region of Interest) on each object region in the binary 



image, and then get the corresponding ROI grey image from the 

original input color image. Of course this project converts the color 

image to a grey level image at the beginning that there is no need 

to convert the color image to grey image at each time we want to 

get a ROI grey image. 

The major steps of getting ROI grey images by successive small 

ROI windows are: 

1. Finds the coordinates of the rectangle boundary of each 

remaining object in the binary image. This project designs a 

subroutine get_roi_coordinate() to do this. A rectangle boundary of 

one object in the binary image shown in Figure 19 could be seen as 

below in Figure 20. 

 

Figure 20 

2. Initializes a small ROI window, for example, we could initialize a 

small ROI window with the same height as the rectangle boundary 

shown above in Figure 20, and the width of this small ROI window 

could be calculated by width=height*ratio1 where height is the 

height of this ROI window and ratio1= (the height of a training 

image) / (the width of a training image). Here, we could also 

initialize a ROI window with the width the same as the width of a 



rectangle boundary in the situation that the shape of this rectangle 

boundary is too slim rather than too fat. Then the height of such a 

ROI window could be calculated as height=width*ratio2 where 

ratio2= (the width of a training image) / (the height of a training 

image). And we could also choose the height or width of the ROI 

window to other values at different situations and then calculate the 

corresponding width or height. After we initialize the size of the ROI 

window, then we could initialize the x and y coordinates of this ROI 

window, in this project, the ROI windows are always begins from 

the top northwest side in the object rectangle boundary. 

3. Gets the ROI grey image after setting up the ROI window. This 

project designs a subroutine get_roi_image() to obtain a small ROI 

grey image based on the size and the coordinates of the ROI 

window in the binary image. An example of a ROI grey image 

corresponding to an initialized ROI window in the binary object 

rectangle boundary shown in Figure 20 could be seen as below in 

Figure 21. 

 

Figure 21 

4. Apply successive ROI windows to get successive ROI grey 

image for detection. The ROI window could moves from the west to 



the east in the rectangle boundary, or moves from the north to the 

south, or moves from the northwest to the southeast. This project 

just designs algorithms to make successive ROI windows moving 

from the west to the east in the situation that the rectangle 

boundary of an object in the binary image is too fat, and algorithms 

to make successive ROI windows moving from the north to the 

south in the situation that the rectangle boundary of an object in the 

binary image is too slim. If the rectangle boundary of an object is 

neither too fat nor too slim, then resize the corresponding grey 

image and projects it to the eigenfaces subspace for detection 

directly, at the assumption that a face is in one of the three 

situations in an object rectangle boundary as shown below in 

Figure 22.  

 
Figure 22 

The moving of the ROI window or the making of successive 

windows is done by setting step width and threshold for the moving 



of window. If we want successive windows moving from the west to 

the east, then we could set up x step width for the moving and a 

threshold to stop the moving. The idea is the same for the moving 

of windows from the north to the south. The x step width could be 

made as x step width = (the width of the rectangle boundary – the 

width of the initialized ROI window) / 20, and 20 means that we will 

have at most 20 successive windows for detection. The threshold 

to stop the moving of windows could be made as threshold = the 

width of the rectangle boundary minus the width of the initialized 

ROI window.  

5. Resize the ROI grey image to the same size as the training 

image. This step of resizing is done by a function from OpenCV 

cvResize() using the bilinear interpolation method.  

2.5 Projects each ROI image 

Project each ROI grey image to the eigenfaces subspace to obtain 

the weights of this ROI image. Firstly smooth the ROI grey image, 

and then projects it onto the eigenfaces subspace. The projection is 

done based on the formula shown in Figure 13 in the previous 

chapter of this report. This project designs a subroutine 

project_to_subspace() to project the image to the eigenfaces 

subspace to obtain all the projected weights, and this subroutine 

calculates the Euclidean distance between an image and the whole 



eigenfaces subspace at the same time.  

2.6 Calculates the Euclidean distance 

Calculate the Euclidean distances between the ROI image and all 

the eigenfaces. This is done by the formula shown as below in 

Figure 23. 

 

Figure 23 

The Figure 23 shows the calculation of Euclidean distance between 

an image and a specific eigenface, and the Euclidean distance 

between an image and the whole eigenfaces subspace. 

After calculating the Euclidean distances, find the maximum 

Euclidean distance and the minimum Euclidean distance from the 

above step, and also calculates the average of all the Euclidean 

distances between the ROI image and all the eigenfaces. 

2.7 Calculates the possibility 

Calculate the possibility of the existence of a face in the ROI image 

by considering the maximum Euclidean distance, the minimum 

Euclidean distance, the average Euclidean distance, and the 

Euclidean distance between the ROI image and the whole 

eigenfaces subspace. This project designs a subroutine 

calculate_possibility() to calculate the possibility by some 

predefined thresholds. If the minimum Euclidean distance is below 



a threshold as well the Euclidean distance to the subspace is also 

below a threshold, then there might possibly be a face in the image. 

But if only the minimum Euclidean is below a threshold and the 

Euclidean distance to the subspace is much larger than a threshold, 

then we could not say that there is a face because this situation 

only implies that the image is coding similarly to one of the training 

face images. And if the minimum Euclidean distance is a little larger 

than a threshold, but the Euclidean distance to the subspace is 

below a threshold as well the average Euclidean and the maximum 

Euclidean are below some thresholds, then we could still make a 

decision that there is an unknown human face in the image.  

The thresholds for calculating the final possibility are made by 

many times of testing on many test images in this project. However, 

if we want to improve the accuracy of detection, then we have to set 

higher thresholds which means that more faces will be missed. And 

if we set lower thresholds then more faces would be detected, at 

the cost of more false detection. Thus there is a compromise in 

choosing the thresholds for calculation of possibility. An example of 

image with false detection could be seen as below in Figure 24. 



 

Figure 24 

2.8 Detect faces 

The last step of the detecting part as well as the last step of the 

whole project is detecting faces based on the final possibility of the 

existence of a face. An example of the output in an image with both 

the right detection and false detection could be seen below in 

Figure 25. 

 

Figure 25 

Once we detect a face in a ROI image, then we could stop the 

moving of the ROI window in the current rectangle boundary area 

and continue to search for another rectangle boundary of another 

object and do the detection. 



Experiments and testing 

In order to test the efficiency and access the viability of this 

approach, this project builds experimental system whose diagram 

could be seen in Figure 2 to shows outputs of each step of the 

whole program (the major diagram could be seen above in Figure 2, 

and the major steps and procedures of this project could be seen 

above in the technical approach chapter). And for testing in 

different conditions, this project chooses pictures taken in different 

conditions and with different people, and these people are with 

different facial expressions.  

Experiments of training 

The experimental system of eigenfaces is shown in Figure 2, and 

the training data set is shown in Figure 3. The testing plans and test 

results of eigenfaces are: 

1. Test the calculation of the average face. This subroutine works 

well, and the result could be seen in Figure 5. 

2. Test the calculation of the covariance matrix. It is hard to access 

the accuracy of each element in the covariance matrix. However, 

Figure 11 shows that there seems to be no error in calculation of 

the covariance matrix because the output covariance matrix indeed 

helps calculating the useful eigenfaces. 



3. Test the Jacobi rotation. The output of the Jacobi rotation could 

be seen in Figure 11 in which is a covariance matrix after being 

calculated by Jacobi rotations. 

4. Test the eigenfaces. The output eigenfaces could be seen above 

in Figure 12. The accuracy has to be tested in further steps. 

5. Test of the whole training procedure and eigenfaces approach. 

After calculating the previous procedures and obtain the eigenfaces 

subspace, this project projects each training face onto the 

eigenfaces subspace, and detect images with the same size as the 

training images based on the eigenfaces and the projected weights 

of training images to eigenfaces. Through the testing of detection of 

these images, this project finds that the eigenfaces approach works 

in recognition procedure, that is, an image with a human face 

indeed has smaller Euclidean distance to subspace and has a 

smaller minimum Euclidean distance to eigenfaces. And if we 

project and calculates the Euclidean distance of a known face 

image, we could find that the Euclidean distance tends to zero 

which means that the face is recognized. However, this project also 

finds that the brightness of an image influence greatly of the result. 

To illustrate the testing result of eigenfaces better, let us see an 

example shown below in Figure 26. 



 

Figure 26 

As shown above in Figure 26, the person in the left testing image is 

the same person in the right testing image, and even the facial 

expressions are the same. However, the result Euclidean distances 

are very different. The reason is because the brightness and 

background of the right image are different with the training images 

while the left image is close to the training images. Thus, the 

brightness and the background of an image could influence the 

result of recognition by eigenfaces. And the choosing of training 

images could of course influence the viability of the training 

procedure based on eigenfaces approach. To deal with this 

problem, we could apply some preprocessing procedure such as 

normalizing the images. 

Experiments of Detection 



The experimental system’s diagram of detection could be seen in 

Figure 2, and each step could be seen in the technical approach 

chapter. The testing plan is: 

1. Tests of converting the image to binary image. This project 

applies a HSV range as the threshold to convert to image to a 

binary image at the assumption that we are dealing with images 

taken in good light conditions and we just need to detect human 

faces with normal facial expressions. Some good examples could 

be seen above in Figure 15 and Figure 17. And some examples 

could be seen below in Figure 27 that it is hard to find potential area 

for further detection of faces, and even the conversion makes the 

detection more difficult.  

 
Figure 27 

To handle with this problem, we could choose a larger range of 

threshold, or apply other algorithms based on the edge or color 



histogram to calculate a threshold rather than use a HSV range as 

the threshold. 

2. Tests of the erosion and connectedness for panning. The erosion 

function works well in this project, and this project has tested 6 

types of structure elements, and has tried different combinations of 

structure elements in more than one time of erode operation. The 

more erode, the more information we might lost. Thus this project 

uses two times of erode operations, and the result could be seen 

above in Figure 17. The 6-connectedness method is used in this 

project in grouping region in the binary image, and then calculates 

the complexity, and then filtering out useless objects whose areas 

and complexities are very small. The result could be seen in Figure 

18. And through the experiments and testing, it seems that erosion, 

grouping and panning all work well. This is because these functions 

work on the output of the firstly converting of binary image. If we 

obtain a useful binary image, then we could get useful information 

by erosion and grouping and panning. However, if we work on a 

meaningless binary image, the erosion and grouping could not help 

in the detection. Thus the viability of this part relies on the quality of 

the binary image. 

3. Tests of successive ROI windows. As shown in Figure 22, this 

project assumes that the face in a rectangle boundary of an object 



in the binary image is in one of the three situations. Thus this 

project just applies successive ROI windows either from the north 

to the south or from the west to the east. But through experiments, 

we could see another situation as shown below in Figure 28. 

 

Figure 28 

As shown in Figure23, this project could not detect the face by the 

successive ROI windows used in this project. To detect this face, 

this project has to apply a more complex successive window 

searching from the northwest to the southeast. But this will 

decrease the efficiency and might cause more false detections. 

Another method is to erode one more time or erode with a stronger 

structure element. 

4. Tests of projection and detection. This project chose different 

pictures taken in different conditions with different human faces to 

project to eigenfaces subspace and detect faces by the Euclidean 

distance. The project firstly detects faces just by the minimum 

Euclidean distance between the input image and the eigenfaces. 

But this causes many false detections and many missed faces. An 



example could be seen below in Figure 29. 

 

Figure 29 

As shown in Figure 29, the minimum Euclidean distance is below a 

threshold used in this project, but this is a hand rather than a face. 

Thus this project designs an algorithm calculating the possibility of 

a face by considering the combination of the minimum Euclidean 

distance, the maximum Euclidean distance, the average Euclidean 

distance and the Euclidean distance to the subspace. And then 

some unknown faces used to be missed can be detected too. 

However, even though this algorithm help improve the accuracy 

and detecting rate, it is still hard to compromise the accuracy of 

detection and the detecting rate. The smaller threshold causes the 

more accurate detection but with more missed faces. A potential 

solution to improve the detection might be applying self-adaptive 

thresholds to calculate the possibility. That is if the detection system 

could not detect faces then it could adjust the thresholds to lower 

values, and if the system find many faces in a short time and a 



small number of images then it could adjust the thresholds to higher 

values. 

5. Test the whole project. The whole project is tested on many 

different pictures. The detection works well on images taken in 

good conditions as assumed in the beginning of this report. But if 

the project is working on images taken outside the previous 

assumptions, then it could not detect anything. An example 

containing both good detection and the reason of a missed face is 

shown below in Figure 30. 

 

Figure 30 

As Figure 30 shown, if the image is in good condition as the 

previous assumptions, then the faces could be detected. In the first 

picture, two faces are detected, and the reason of a missed face is 

because this person’s face is different with the training faces, thus 

the final possibility calculated is a little smaller than the predefined 

threshold. And the reason of another picture is that this picture is 

too small, and then the face area is treated as useless object and 

be filtered out. One solution is that we could find a larger image. 



Future Works 

In order to improve the viability and efficiency of this fast face 

detection approach, some improvements and method could be 

applied in the future works.  

1. Apply preprocessing techniques for eigenfaces training and 

eigenfaces detection. Such preprocessing technique could be 

normalizing the training images and test images.  

2. Apply more complex algorithms rather than just choose a HSV 

range to calculate the threshold to convert the image to binary 

image. We could apply feed –back algorithms in calculating the 

self-adaptive thresholds. The color range could be adjusted 

through the color histogram of the input image. 

3. Apply Edge Detection and Hough Transform in finding the 

potential ROI of face area, and filter out useless objects by the 

edge features and shape features. 

4. Apply a more adaptive successive window to search in a specific 

region from the northwest to the southeast.  

5. Apply self-adaptive thresholds rather than fixed thresholds in 

calculation of the final possibility. Thus the adaptive threshold could 

compromise itself that increase the accuracy in some situations 

and decrease the missing rate in other situations. 



Conclusions 

This project designs a fast face detection method to detect human 

faces based on eigenfaces approach with a small training data set. 

Through the design and experiments of this project, we could see 

that the PCA idea and eigenfaces approach could be useful at 

some specific assumptions. With a small training data set, the 

eigenfaces approach could train fast and detect fast with a good 

performance and good accuracy on images taken in good 

conditions as the previous assumptions. And this project designs 

an approach to fast find the potential area to be detected by doing 

processing in binary image. By combining the binary techniques 

and PCA idea, we could design any specific fast detection system 

in detecting and recognizing specific objects in specific conditions. 

In future works, if we have different objects, then we could have 

different assumptions. And then we could choose different training 

data set or even different detection method such as LDA or HMM 

rather than PCA. And we could apply different algorithms to 

calculate thresholds to convert the image to binary image. Or we 

could directly find the ROI by other method without converting to 

binary. And we could also apply different algorithms to calculate the 

final possibility to obtain the result.  
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